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SUMMARY 
The paper explains why it is often difficult to estimate co-variance matrices from data and describes 
the variance structures available in ASREML to investigate the problems. Difficulty arises when the 
assumed model is not correct and because of sampling variation in the matrices. 
Keywords: Genetic correlation estimation, average information, REML, variance components 

INTRODUCTION 
Animal breeders are often interested in estimating variance/co-variance matrices from data. These 
include genetic and residual matrices between traits and between times which are used to calculate 
heritabilities and genetic correlations. Restricted Maximum Likelihood (Patterson and Thompson 
1971) is now the preferred method and is implemented in many programs including ASREML 
(Gilmour et al. 1997). ASREML uses a quadratic convergence method based on the Average 
Information (Gilmour et al. 1995) matrix and is generally quite efficient. 

Assuming we have an appropriate variance model, there is a problem associated with estimating 
variance component matrices which is independent of the algorithm used to obtain the estimate. It is 
that sampling variation in the data often supports a non-positive definite matrix for some 
components, ie. the estimated matrix is outside the theoretical parameter space for the proposed 
model. Thus, strategies are required to produce estimates which are in the parameter space. 

I will consider first why this problem occurs and then how this problem is addressed in ASREML. 

HOW NON-POSITIVE DEFINITE MATRICES ARISE 
Consider the simple sire model with 2 traits and balanced data. The Error Mean Square (Error MS) 
matrix can be calculated from sums of squares and cross products of the residuals. Similarly, the 
Sire Mean Square (Sire MS) matrix can be calculated from the sums of squares and cross-products 
(weighted) of the sire effects. Both matrices will always be non-negative semidefinite and will be 
positive definite unless all the residuals/effects are zero for one trait or the residuals/effects for the 
traits are perfectly correlated. When data is unbalanced, these mean square matrices are not 
necessarily but usually will be positive definite. However, an uneven distribution and amount of 
missing data may lead to non-positive definite mean square matrices. 

Assuming these mean square matrices are positive definite, the problem arises when we impose an 
expectation model on them. We might suppose the Error MS matrix is a matrix sampled from a 

distribution with expected value 2 E and that the Sire MS matrix is sampled from a distribution with 

expected value I: E + kz,. Then we can estimate these component matrices (given we can 
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calculate k, the number of progeny per sire in the balanced case) as simple functions of our observed 

matrices. While our estimates are unbiassed if the model is correct and the estimate of z, is 

positive definite if the Error MS is positive definite, the estimate ofx, will often not be positive 

definite. This arises because both mean square matrices are sampled with error even if our 
expectation model is correct. 

Several factors contribute to this result. Sometimes there will be unidentified sources of variation in 

the data which inflate the Error MS and therefore reduce the estimate of zs . Further, the sampling 

variation is increased if the sample size is small. Increasing the number of traits increases the chance 

that the estimate of Xc, will not be positive definite. Finally, when correlations are high in the mean 

square matrices, correlations implicit in 2 s are more likely to have magnitude greater than 1. 

For the balanced model described above, the method of equating mean squares to their expectations 
produces REML estimates of the variance components when the estimates are in the presumed 
parameter space. However, we generally use specific REML software for estimating the components 
because it can handle the unbalance introduced by unequal replication, missing values and the fitting 
of other terms in the model to remove extraneous variation. 

We are uncomfortable with negative variances (although they are not always invalid) and 
correlations with magnitude greater than 1. Furthermore, some REML algorithms fail when the 
matrix cannot be inverted so that we get no answer at all! Therefore we need a strategy to produce 
estimates within the parameter space or at least on the boundary. One strategy is to collect more data 
so that the sampling variance of the mean square matrices is reduced. Another strategy is to review 
the model being fitted in case there is a more appropriate model. ASREML provides two other 
strategies. One is to fit a more robust variance structure .with fewer parameters. Some alternative 
parameterisations are discussed in the next section. 

The other strategy is to restrict the parameter values to the parameter space: variances must be 
positive, correlations must be less than 1 .O in magnitude and matrices must be positive definite. It is 
relatively easy to fix individual variances and correlations near the boundary if the parameter updates 
would take them out of bounds. Forcing a matrix to be positive definite can be achieved by bending 
(drawing the eigen values towards their mean until all are positive) but this does not work as well as 
might be hoped when iterating. Thus, using more parsimonious variance matrix structures is often a 
better strategy. We now look at some alternative structures and comment on when they are useful. 

SOME VARIANCE MATRIX STRUCTURES 
For the residuals ordered traits within units, the typical variance structure for the residuals is given by 

the direct product 10 x:E of an identity matrix for independent units by an unstructured 

variance/co-variance matrix across traits. For the sire effects, assuming sire.trait (traits nested within 

sires) and a genetic relationship matrix among sires of A, the variance structure would be An Es . 

ASREML can form the inverse relationship matrix if a pedigree file is provided or it can read one 
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which the user might create assuming some other relationship model, for example a gametic 
relationship matrix. 

Unstructured (US). The basic form of a variance matrix is the unstructured matrix (US) which is 
symmetric but each variance and co-variance is a separate parameter. Therefore it has n(n+1)/2 
parameters for a matrix of order n. This is usually reasonable for n small but quickly seems over- 
parameterised as n increases. ASREML typically assumes 2 E (referred to as an R structure) has this 

form in multi-variate (and repeated measures fitted as multi-variate) analyses. When used as a model 

for 2 s (referred to as a G structure), ASREML sometimes fails when the estimate becomes non- 

positive definite because the algorithm depends on being able to invert the matrix. If requested, 
ASREML will bend the matrix to make it positive definite. Otherwise, it might converge to a 
negative definite solution. 

Homogeneous variance correlation models a2C. For these models, we specify a correlation 

structure C and a scale parameter ( a2) for the whole matrix. The most commonly used forms of C 
are the Identity (zero correlation), the uniform correlation model and various low-order auto- 
regressive moving average correlation models. These are often plausible models which usually 
produce solutions in the parameter space. 

Heterogeneous variance correlation models SCS. For these models, we specify a correlation 
structure C as before and a diagonal variance matrix. The correlation matrix is then pre and post 
multiplied by the square root (S) of the variance matrix to generate a matrix with the specified 
variances. Sometimes, it is helpful to tit this model to obtain starting values for fitting the US 
model. 

Factor analytic models. ASREML has two forms of the factor analytic model. The standard form 
is a matrix SCS where S is a scaling matrix as before, C = FF’+E is a correlation matrix, F is a 
matrix defining the ‘factors’ (similar in concept to principal components) and E is a diagonal matrix 
such that the diagonal of FF’+E is 1. Conceptually, for E to have positive values (representing trait 
specific independent variation), the diagonal of FF’ must be constrained to be less than 1. Typically 
F will have 1 or 2, maybe 3 columns which will soak up most of the correlation structure. 

The second form of the factor analytic model omits S so that the scale components are built in to F 
and E. In this model, E and F are estimated rather than S and F. The constraint is then to require the 
elements of E to be positive. 

The latest model considered for ASREML is the reduced rank model FF’ which is related to the 
factor analytic models with S=I and E=O. 

Cholesky decomposition LDL’. The Cholesky decomposition as implemented in ASREML has not 
proved to be a useful parameterisation. L is a lower triangle matrix with 1 on the diagonal and D is 
diagonal. In its full form, it has as many parameters as the US structure but they are progressively 
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row-wise dependent which leads to convergence problems. ASREML allows for high lag elements 
to be zero but such a banded variance matrix is rarely required. Another parameter reduction is to fix 
elements of D to be very small and positive (almost zero) and the corresponding columns of L to be 
zero. This mimics the reduced rank model described in the preceding paragraph. 

Antedependence decomposition UDU’. This model is parametized in terms of the inverse of the 
Choleski decomposition and can be viewed as a generalization of the heterogeneous autoregressive 
(AR) model. ASREML allows bands of U to be set to zero. The model is particularly appropriate in 
a growth model where each ‘trait’ represents a random addition to the previous one(s). Unlike the 
AR model, it does not assume the ‘traits’ are equally spaced or have constant variance of the 
additional growth. 

Covariance functions and splines. Another approach to variance modelling is to think of 
transforming the design matrix (Z) for the random effects. This is behind the use of co-variance 
functi,ons and cubic splines, particularly in a repeated measures context. A change of the design 
matrix implies a complementary change to the G matrix as it changes the meaning of the random 
effects fitted in the model. 

CONCLUSIONS 
The problem of parameter estimates being outside the assumed parameter space may arise from 
specifying inappropriate variance models but usually is caused by sampling variation. The three 
strategies available in ASREML are to accept the estimates anyway, to fix offending parameters 
close to the boundary and to fit a less parameterised structure which may overcome the problem. By 
providing a hierarchy of variance model structures, ASREML allows plausible ‘smoothed’ models to 
be fitted in the general multi-variate variance component estimation situation. The uniform 
correlation and factor analytic models have proved very useful in a variety of contexts, especially 
where the dominant components of the structure are of interest. 
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