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SUMMARY 
A method has been developed for simulating the gametic relationship matrix at a quantitativepait 
locus (QTL) for a pedigreed population with full or partial marker genotype information. This has 
provided a p0werfi.d basis for the comparison of different methods of genetic evaluation of 
individuals at the QTL. The method can be extended to cover multiple linked genetic markers. 
This work can be used to help ensure a rational basis for marker assisted selection breeding 
programs. 
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INTRODUCTION 
Genetic markers provide information about the transmission of quantitative trait loci (QTL) alleles 
from parents to offspring. The use of this genetic information in the prediction of breeding values 
for domestic livestock has meant that additional additive gametic effects for individual QTL can 
be added to the usual mixed model equations to obtain best linear unbiased predictions (BLUE) of 
additive genetic effects. These extra gametic effects are included in a gametic relationship matrix 
(GEM) which contains probabilities of identity by descent of QTL alleles between gametes where 
paternally and maternally inherited alleles are considered separately. 

Fernando and Grossman (1989) described rules to build the inverse of the GRM directly taking 
into account recombination rates between genetic markers and QTL. This involved assigning 
paternal and maternal origin to marker alleles. A recursive method to build the same GRM was 
developed by van Arendonk et al. (1994). However, use of either of these methods can result in 
loss of information when parental origin of marker alleles is unknown. Wang et al. (1995) and 
Bink and van Arendonk (1994) described how to build the GRM and its inverse when parental 
origin may not be known, with the method of Wang et al. including an inbreeding coefficient for a 
QTL conditional on observed marker genotypes. These methods differ in computational ease and 
the assumptions required to build the GRM and its inverse, and cover both knowledge of parental 
origin of marker alleles and no knowledge of parental origin. 

The GRh4 contains probabilities that genetic marker alleles are identical by descent. This is an 
estimation of the relationship between individuals for QTL alleles. The true gametic relationship 
matrix would contain indicators (either 0 or 1) whether QTL alleles are identical by descent. 
However, without knowledge of QTL alleles carried by an individual, the GRM built using marker 
information is the best estimate of the true gametic relationships. 
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A method was developed to build the true gametic relationship matrix using simulated genotype 
information which is based on known genetic marker information. This method may be used to 
compare different methods of building the GRM when parental origin is either known or 
unknown. The effect of differing GRMs on estimation of breeding values is also illustrated. 

QTL SIMULATED GRM 
Given pedigree and genetic marker information the true GRM was simulated. QTL alleles linked 
to known marker alleles were simulated for individual animals and a GRM was built based on the 
QTL information. This could be identified as the true GRM as it was not only built using QTL 
instead of marker alleles, but consisted of only O’s and l’s for any one population, these being the 
known incidences of QTL alleles being identical by descent. This was possible through tracing 
the inheritance of simulated QTL alleles throughout the whole population. 

A single autosomal marker locus was assumed. The marker locus and the QTL were both biallelic 
(alleles 1 and 2). Marker and QTL alleles linked with a recombination rate of 0.1 were simulated 
for each animal. In the case that simulated marker genotypes did not match known marker 
genotypes, the markers and the QTL alleles were resimulated. A QTL genotype and associated 
phenotype were simulated for each animal within each replicate population. This information 
could then be used for breeding value estimation. 

Genotype values were simulated as a, d and -a for genotypes A,A,, AlAz and A,A,. True 

breeding values were calculated as 2crr, ai + a2 and 2a2, where: a is the average effect of a gene 

substitution (a = al - a2) and al = q (a + d (q - p)), a2 = -p (a + d (q - p)), where p is the 
frequency of A, . Phenotypes were simulated as a function of QTL genotype and environment, 
where z is a normally distributed random number N(0, 1): 

phenotype = genotype + fi z . 

Using a fixed pedigree structure and known marker alleles (Table 1) many replicate populations 
were simulated with the same marker genotypes but varying linked QTL alleles. These GRMs 
were averaged over replicates and then averaged over total number of replicates to provide a 
simulated GRM (sGRM). Replicate populations continued to be generated until sGRM elements 
all changed by less than 10” with the addition of the last replicate. 

GRM COMPARISON 
Using the same pedigree and marker information as in Table 1, gametic relationship matrices were 
built using the methods of Fernando and Grossman (1989), van Arendonk et al. (1994), Wang et 
al. (1995) and the above mentioned simulated QTL method, labelled Method 1,2,3 and sGRM 
respectively. A comparison of these different methods required a qualitative assessment of 
individual elements in the relationship matrix and then an evaluation of the quantitative 
importance of resulting differences in estimation of breeding values. Breeding values were 
estimated according to the mixed model equations given by Fernando and Grossman (1989). 
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Table 1. Set pedigree and marker information A six animal, three generation pedigree 
(Table 1) was used, with QTL alleles 

Animal Sire Dam Marker Genotype simulated according to the following 
1 - - 11 parameter values: QTL allele frequency 

2 - - 12 in the base population p = 0.5, a = 1, d = 

3 1 2 12 0, Va = 2pq[a + d (q - p)]2, Ve = 0.5. 

4 1 2 11 Polygenic effects were assumed to be 

5 3 4 21 equal to zero. 100,000 replicate 

6 3 5 21 populations were simulated according to 
the pedigree and marker information in 
Table 1, therefore, giving a unique set of 

QTL genotypes and associated phenotypes for each replicate population. This allowed estimated 
breeding values (EBVs) to be predicted using the different gametic relationship matrices at each 
replicate. 

Individual elements of the GRMs built using the 4 different methods were compared using a sum 
of squared differences (Equation 1) between equivalent elements (i> in two GRMs (A and B). The 
EBVs resulting from solving the mixed model equations which included the inverse of the GRMs 
were compared according to correlation coefficients of the estimated (X) versus the true (X) 
breeding values. The higher the correlation coefficient represented the method that gave breeding 
values which were closest to the truth. 

difference = “z(ai - bi)2 
i=l. 

RESULTS 
The methods of Fernando and Grossman (1989) and van Arendonk et al. (1994) gave the same 
GRM (Table 2). This assumed that the first marker allele given for each animal represented the 
marker inherited from the sire of the individual and that the second marker allele was from the 
dam. This assumption was valid for all animals other than animal number 6, whose parental 
origin of marker alleles is uncertain. The GRM built using the method of Wang et al. (1995) was 
almost identical to the sGRM. These two only differed Corn the first two methods in variances 
and covariances relating to animal number 6. The standard errors on the elements of the simulated 
GRM were extremely small, giving confidence in their values. 

Table 2. Sum of squares of differences between 
elements in the four different GRMs 

Method 2 Method 3 sGRM 
Method 1 0.000000 2.590268 2.592401 
Method 2 2.590268 2.592401 
Method 3 0.000014 
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Over 100,000 replicate populations the 
following means and standard deviations 
of correlations were produced (Table 3). 
Due to occasional lack of variance in the 
true breeding values, it was not possible to 
calculate correlations between the EBVs 
and true breeding values for some 
replicates. From the 100,000 replicates 
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77,963 provided information to calculate correlations. These results (Table 3) indicate significant 
differences in me?in correlations between all methods. 

Table 3. Means and standard deviations 
of correlations between estimated and 
true breeding values from 77,963 
replicates of different methods of building 
the gametic relationship matrix 

MesIr Standard deviation 
Method 1 0.6917 0.2127 
Method 2 0.6889 0.2133 
Method 3 0.699% 0.2124 
sGRM 0.702 1 0.2100 

DISCUSSION 
Although the relationship matrices built by 
Fernando and Grossman (1989) and van 
Arendonk et al. (1994) were identical, their 
methods to build inverses gave different results. 
The inverse of the GRM built using the rules of 
Fernando and Grossman did not give the correct 
inverse of the GRM for this particular pedigree. 
This explains the differences in correlations 
(Table 3). Fernando and Grossman’s method of 
building the GRM and its inverse is far less 
computationally demanding than that of van 
Arendonk et al. However, the latter method 
may be more tractable for multiple QTL. 

The method of Wang et al. (1995) appears to be most closely related to the correct gametic 
relationship matrix. This would suggest that this method should be used in preference to the other 
published methods. This is especially the case with the given pedigree which contained animals 
whose parental origin of marker alleles was unclear. Jn establishing the importance of such 
differences between elements within the GRM to estimating breeding values the results indicate 
that the consequences of error in using the less accurate methods may be relatively unimportant. 
Although this study was carried out using only a single marker locus linked to a quantitative trait 
locus, it may be used to compare new methods which involve any number of genetic markers 
linked to the loci of important traits. 

The small pedigree was engineered with an appropriate loop to distinguish between GRM building 
methods. The sGRM is built using a gene drop method which aborts non-conforming pedigrees. 
This is a disadvantage of the method that it is unable to be used on larger pedigrees. However, the 
aim of the method is to investigate the properties of unusual GRMs which are not only a feature of 
larger pedigrees. 
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